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The Unit Circle

Many important elementary functions involve computations on the unit
circle.
These “circular functions” are called by a different name, “trigonometric
functions.”
But the best way to view them is as functions on the circle.

Smith (SHSU) Elementary Functions 2013 2 / 54

The Unit Circle

The unit circle is the circle centered at the origin (0, 0) with radius 1.
Draw a ray from the center of the circle out to a point P (x, y) on the
circle to create a central angle θ (drawn in blue, below.)
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The Unit Circle

The radius of the circle is one, so P (x, y) is a vertex of a right triangle
with sides x and y and hypotenuse 1.
By the Pythagorean theorem, P (x, y) solves the equation

x2 + y2 = 1 (1)
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Central Angles and Arcs

An arc of the circle corresponds to a central angle created by drawing
line segments from the endpoints of the arc to the center.
The Babylonians (4000 years ago!) divided the circle into 360 pieces,
called degrees. This choice is a very human one; it does not have a
natural mathematical reason. (It is not “intrinsic” to the circle.)
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Central Angles and Arcs

The most natural way to measure arcs on a circle is by the intrinsic unit of
measurement which comes with the circle, that is, the length of the radius.

The unit of length given by the radius is called a radian; we will measure
arcs and their angles by radians.

This sometime involves the number π.
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Central Angles and Arcs

The ancient Greeks noticed that the circumference C of a circle was
always slightly more than three times the diameter d of the circle.
They used the letter π to denote this ratio, so that

π :=
C

d
=
C

2r
.

Since the length d of the diameter of a circle is merely twice the radius r
then this is often expressed in the equation

C = 2πr. (2)
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Central Angles and Arcs

The circumference of a circle, that is, the arc going completely around the
circle once, is an arc of 360 degrees, and so the correspondence between
the ancient Babylonian measurement of degrees and the natural
measurement of radians is

360 degrees = 2π radians

or, after dividing by 2,

180 degrees = π radians

We can write this equation as a “conversion factor”, that is,

π radians

180◦
= 1 (3)

and so if we want to convert degrees to radians, we multiply by this factor.
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Central angles

Here are some sample problems based on these unit circle terms.

1 Change 240◦ to radians
Solution. Since π radians represents 180◦ (halfway around the circle)

then 240◦ = 240
180π radians, which is equal to 4π

3 radians .

2 Change 40◦ to radians.
Solution. Mechanically we may multiply 40◦ by the conversion factor
π radians

180◦ , so that degrees cancel out:

40◦ = 40◦(π radians
180◦ ) = 40

180π radians = 2
9π radians .

3 Change 1.5 radians to degrees.
Solution. Mechanically we multiply 1.5 radians by 180◦

π radians (the
reciprocal of the earlier conversion factor) so that radians cancel and
the answer is in degrees:

1.5 radians = 1.5 radians( 180◦

π radians) = (1.5·180π )◦ = (270π )◦.
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Central Angles and Arcs

In the next presentation, we will look at arclength.

(End)
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Arc length and sector area

Working with radians instead of degrees simplifies most computations
involving a circle. In this presentation we look first at arc length problems
on an arbitrary circle and then at areas of sectors of an arbitrary circle.

As we go through this material,
notice how important radians are to our computations!

Arc length
If we measure our angles θ in radians then the relationship between the
central angle θ and the length s of the corresponding arc is an easy one.

The length s should be measured in the same units as the radius and so if
θ is measured in radians, we just need to write the radian r in these same
units.
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Central Angles and Arcs

For example, suppose the central angle θ is 2 radians and the circle has
radius is 20 miles.

Then the length s of the corresponding arc is

2 radians = 2 · 20 miles = 40 miles.

We can state this relationship as an equation:

s = θr

but it should be obvious.

(If there are 3 feet in a yard, how many feet are there in 8 yards?
Obviously 8 · yards = 8 · 3 feet = 24 feet. There is no difference between
this change of units computation, yards-to-feet, and the change of units
computation for arc length.)
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Some worked problems on arclength

1 Find the arclength s if the radius of the circle is 20 feet and the arc
marks out an angle of 3 radians.

Solution. If the radius is 20 feet and the arc subtends an angle of 3
radians then 3 radians is equal to (3)(20) = 60 feet.

2 Find the length s of the arc of the circle if the arc is subtended by the
angle π

12 radians and the radius of the circle is 24 meters.

Solution. π
12 radians is π

12 · 24 m = 2π meters.

3 Find the arclength s if the radius of the circle is 20 feet and the arc
marks out an angle of 10◦.

Solution. 10◦ is equal to π
18 radians. (We have to ALWAYS work in

radians here!) If the radius is 20 feet and the arc subtends an angle of
π
18 radians then π

18 radians is equal to ( π18)(20) =
20π
18 = 10π

9 feet.
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An example from history.

The ancient Greeks believed, correctly, that the earth was a sphere.

(They recognized a lunar eclipse as the shadow of the earth moving across
the moon and noticed that the shadow was always part of a circle so they
reasoned that the earth, like the moon, was a large ball.)

About 230 BC, a Greek scientist, Eratosthenes, attempted to determine
the radius of the earth. He noted that on the day of the summer solstice
(around June 21) the sun was directly overhead in the city of Aswan (then
called Syrene). But 500 miles due north, in the city of Alexandria where he
lived, the sun was 7.5◦ south of overhead.
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An example from history.

Assuming that the earth was a perfect sphere and so the cities Aswan
(Syene) and Alexandria lie on a great circle of the earth, Eratosthenes was
able to calculate the radius of the earth. Here is how.
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An example from history.

The central angle C = 7.5◦ is equal to about π/24 radians.

Since 500 miles equals π/24 radians then 500 = (π/24)r and so

r = 12000/π which is about 3820 miles.

Since the true radius of the earth is now known to be about 3960 miles ,
this is a rather accurate measurement of the size of the earth!
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Central Angles

In the next presentation, we will look at other computations involving the
central angle, angular speed and sector area.

(End)
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Central Angles and Arcs

Linear speed v. angular speed
Our earlier “obvious” equation s = rθ, relating arc to angle, also works
with measurements of speed. The angular speed of an spinning object is
measured in radians per unit of time. The linear speed is the speed a
particle on the spinning circle, measure in linear units (feet, meters) per
unit of time.

Suppose a merry-go-round is spinning at 6 revolutions per minute. The
radius of the merry-go-round is 30 feet. How fast is someone traveling if
they are standing at the edge of the merry-go-round?

Solution. Six revolutions per minute is 6 · 2π = 12π radians per minute.
This is the angular speed of the merry-go-round. In this problem, a radian
is 30 feet so 12π radians per minute is(12π)(30 feet) per minute

= 360π ft/min ≈ 1131 ft/min . (This is about 13 miles per hour.)
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Reference angles

Given an angle θ we will talk about the smallest angle made by the arc
and the x-axis. For example, an angle of 150◦ has reference angle 30◦

degrees since the ray from the origin to the circle makes a 30◦ angle with
the x-axis.

The reference angle for θ = 210◦ is also a 30◦ angle in the third quadrant.
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A worked problem.

Draw, in standard position, the angle whose measurement, in radians, is
4π
3 . What is the reference angle for 4π

3 ?

Solution. This will be the angle 240◦, dropping into the third quadrant,
60◦ below the x-axis. The reference angle is the smallest angle created
with one side on the x-axis; here it is 60◦ or π/3 radians.
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Area of a sector

If we join the endpoints of an arc to the center of the circle, we obtain a
region often shaped somewhat like a triangle.

This sector is bounded by two radii and the arc.
A typical slice of pizza is an example of a sector of a circle.
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Area of a sector

The area of a sector can be determined by acting as if the sector were a
triangle with base equal to the arc length and height equal to the radius.
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http://en.wikipedia.org/wiki/Circular_sector


Area of a sector

Since the area of a triangle is one-half the product of the base and the
height then the area of a sector is one-half the product of the arc length
and the radius,
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Area of a sector

So one equation for the area of a sector is

A = 1
2rs

We can substitute rθ for s and so

A = 1
2r

2θ

where θ is (of course!) measured in radians.
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A worked problem.

Find the area A of a sector if the radius is 20 feet and the arc marks out
an angle of 3 radians.

Solution. The area of a sector satisfies the equation A = 1
2rs. In an

earlier problem we computed s = (20)(3) feet = 60 feet so

A = 1
2(20)(60) = 600 square feet .
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Central Angles and Arcs

In the next presentation, we will look at the two most important trig
functions,

cosine and sine.

(End)
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Sine and cosine functions on the unit circle

The points P (x, y) on the unit circle provide us two obvious “circular
functions.” Given a point P (x, y), draw the central angle with arc passing
from (1, 0) to (x, y), passing counterclockwise around the circle. The
point P (x, y) depends on the central angle θ.
Traditionally the x-value of the point P is the cosine of θ and the y-value
of P is the sine of θ.
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Sine and cosine functions on the unit circle

We abbreviate these functions by writing “cos” for cosine and “sin” for
sine.
Remember that on the unit circle x = cos(θ) and y = sin(θ)
(Notice that these functions are in alphabetical order: since x comes
before y in the alphabet, “cosine” comes before “sine” in the alphabet!)
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Sine and cosine functions on the unit circle

Let’s work through some examples of angles where it is easy to compute
the cosine and sine.
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Sine and cosine functions on the unit circle

x

y

0◦ 0
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

90◦

π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

180◦π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

270◦

3π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

360◦ 2π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

450◦

5π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

540◦3π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

630◦

7π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Sine and cosine functions on the unit circle

x

y

720◦ 4π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 0 = 1, sin 0 = 0

x

y

0◦ 0
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos π2 = 0, sin π
2 = 1

x

y

90◦

π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cosπ = −1, sin π = 0

x

y

180◦π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 3π
2 = 0, sin 3π

2 = −1

x

y

270◦

3π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 2π = 1, sin 2π = 0

x

y

360◦ 2π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 5π
2 = 0, sin 5π

2 = 1

x

y

450◦

5π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 3π = −1, sin 3π = 0

x

y

540◦3π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 7π
2 = 0, sin 7π

2 = −1

x

y

630◦

7π
2

(−1, 0) (1, 0)

(0,−1)

(0, 1)
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cos 4π = 1, sin 4π = 0

x

y

720◦ 4π
(−1, 0) (1, 0)

(0,−1)

(0, 1)
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Some worked problems

Draw the unit circle and then find the exact value of cosine and sine for
the following angles:

1 θ = π.
Solution. π radians is 180 degrees, halfway around the circle. Start
on the unit circle at (1, 0) and go halfway around (counterclockwise)
to the point (−1, 0) at the far left side of the circle. The cosine is the

x-value and the sine is the y-value. So cos(π) = −1 and sin(π) = 0.
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Some worked problems

Draw the unit circle and then find the exact value of cosine and sine for
the following angles:

2 θ = 3π. Solution. Since π radians is 180 degrees, halfway around the
circle, then the angle 3π is 11

2 times around the circle. Start on the
unit circle at (1, 0) and go around once and then halfway around
(counterclockwise) to the point (−1, 0). (Yes, this is the same point
we would find if we only did π radians, so the answer will be the same

as the previous problem.) cos(3π) = −1 and sin(3π) = 0.
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Some worked problems.

Draw the unit circle and then find the exact value of cosine and sine for
the following angles:

3 θ = 7π
2 .

Solution. Since 7
2 is equal to 31

2 then 7
2π radians (= 630◦) is an

angle that goes around the circle one full revolution (360◦) and then
another 270 degrees (three-quarters of a revolution) to the point
(0,−1) at the bottom of the circle. So the answer is

cos(7π2 ) = 0 and sin(7π2 ) = −1.
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Central Angles and Arcs

In the next presentation, we will look in depth at the six trig functions.

(End)
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