
Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-1

Use Case Diagrams

• Basic Concepts

• Actor

• Use Case

• <<includes>>

• <<extends>>

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-2

Basic Concepts

• Use cases are not inherently object-oriented

- An external (user) view of the system
- Intended for modelling the dialog between the users

and the system

• The main concepts in use cases are

- Actor
- Use Case
- <<includes>>
- <<extends>>

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-3

Actor

• An Actor is a role of an object or objects outside of a
system that interacts directly with it as part of a coherent
work unit (a use case)

- One physical object (or class) may play several
different roles and be modeled by several actors

• Notation

Reservation Agent

• Example actors for an Airline Reservation system

- Airline administrators (fare/schedule setting)
- Travel Agent
- Airline Reservations Agent
- Check-in Agents at Airport
- Gate Agent at Airport
- …

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-4

Use Case

• A Use Case captures some actor-visible function

- Achieves some discrete (business-level) goal for that
actor

- May be read, write, or read-modify-write in nature

• Notation

Customer

Place Order

Check Status

Cancel Order
Salesperson

• Use cases within an Airline Reservation system might
include

- Checking in for a flight
- Assigning a seat
- Checking baggage
- …

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-5

<<includes>>

• One common fragment of a user-perceivable action has
been pulled out into a separate use case

- Like a “use case subroutine”

• Example

Travel Agent

Make Reservation

Peruse
Available Flights

Arrange Tour

<<includes>>

<<includes>>

- Make Reservation and Arrange Tour both depend on
Peruse Available Flights

* Note that the arrows go from the dependent
use cases

• Typically used when the same unit of functionality is part
of more than one use case

- The base use cases are, in a sense, incomplete without
the included use case

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-6

<<extends>>

• A significant alternative course of action exists within the
use case

- Like “use case inheritance”

• Example

Ticket Counter
Agent

Check In Passenger

Check Baggage

Assign Seat <<extends>>

<<extends>>

- Assign Seat and Check Baggage both depend on
Check In Passenger

* Note that the arrows go from the dependent
use cases

• Typically used when there are important, optional
variations on the basic theme of the base use case

- The base use case is complete in and of itself

Construx Software Object Modeling with UML

Use Cases (14-Jan-01) Page 3-7

Key Points

• Use cases are not inherently object-oriented

- An external (user) view of the system
- Intended for modelling the dialog between the users

and the system

• An Actor is a role of an object or objects outside of a
system that interacts directly with it as part of a coherent
work unit (a use case)

• A Use Case captures some actor-visible function that
achieves some discrete (business-level) goal for that actor

• <<includes>> and <<extends>> allow common fragments
of use cases to be pulled out into a separate use cases

- <<includes>> is like a “use case subroutine”
- <<extends>> is an alternative course of action

