
1

Software Project Plan

Introduction

Project Scope

GameForge is a graphical tool used to aid in the design and creation of video
games. A user with limited Microsoft DirectX and/or Visual C++ programming
knowledge will be able to construct a basic 2D-arcade game. The idea is to limit
the amount of actual code written by the user. It will also assist experienced
programmers in generating the Microsoft DirectX and Microsoft Windows9x
overhead necessary for basic game construction, allowing them to concentrate on
more detailed game design issues and implementation.

Critique: Bounding is a critical element of the project scope and the project plan. It
would be a good idea to try to "bound" all the general statement of scope noted here.
For example, “a basic 2D arcade game” is open to very broad interpretation. What is
basic to one reader might be unacceptable to another.

The software will consist of a number of inputs, graphically assisting the user in
creating on-screen objects including the following:

• User Created Objects (player character, creatures, static objects)
- Bitmaps (with animation)
- Collision Detection Areas
- Movement Routines
- Additional Object Attributes

• Backgrounds
• Input Device Setup
• Sound Events

The software will also consist of a number of graphical processing functionalities
including the following:

• Defining/Editing Objects (including characteristics)
• Object Positioning
• Opening/Closing/Saving Game Project Files
• Exporting Game Projects to compilable C++ Files

Outputs include:
• User Created Sprite Objects
• Bitmaps
• Microsoft VC++ (with DirectX code) Files
• Game Project Files
• Text Files (containing sprite attributes)

2

• Database Files
Comment: The author have done a good job of providing the reader with a conceptual
model of the information transform that is to occur.

Major Software Functions

Process and Control Functions

• VB interface – The interface is the subsystem the user interacts with. It
creates a project space for all project files to be stored in. It gathers all
necessary data from the user, as well as interacting with the access
databases. The interface then generates data files containing all
specifications of all the sprites, as well as input device information and
sound information. All necessary files such as .wav files and .bmp files
are moved to the project directory. This subsystem contains the screen
representing the game and a list of all sprites and their attributes.

Critique: A fair amount of application specific jargon is introduced here without
definition. Might be a good idea to refer the reader to a glossary or provide a brief
definition as footnotes.

• C++ engine – This subsystem contains the main function of the
system. The engine creates a .cpp file for the game. The file contains
references to the data files generated by the user interface and
references to DirectX code contained in custom header files.

User Interface Processing

• Input Wizards – There are a number of wizards provided to guide the
novice user through the necessary steps for game development. They
range from sprite generation, to game logic, to input devices. The
wizards interact directly with the user interface.

• Level Editor – This is the main interface, and displays a graphical
representation of the game/level a user is designing. A tree-view of all
created objects is also represented here. All wizards and other
functions can be accessed from this interface.

• Help/Tutorial Files – These files include a wide range of help topics,
including FAQ’s, Tutorial, detailed descriptions of objects and VC++
code, and a search engine to find needed information.

3

Input Processing

• Databases – GameForge utilizes a Microsoft Access database to store
sound libraries and image libraries, as well as pre-designed sprites.
The databases are accessed by the user interface.

Output Processing

• Data files – files containing information specified by the user that are
read by the C++ code. The files are generated by the user interface
(information is taken from the resulting database). The user’s game
can be tweaked by editing these files rather than rewriting and
recompiling the C++ code.

• GameForge Files (.gmf) – Files are stored with a unique extension
used exclusively by the GameForge system. These files are similar to
.cpp files but will not be compilable. They are intended as temporary
storage during game creation. They are generated by the user interface.

• VC++ Files (.cpp) – Finished projects can be saved as .cpp files that
can be compiled with Microsoft’s Visual C++ compiler to create an
executable file for the game. The VC++ engine runs these files.

Performance/Behavior Issues

GameForge is designed to be compatible with the Microsoft Windows 9x
operating system. Microsoft Windows NT 4.0 and earlier versions will not be
supported (Windows NT only supports Microsoft DirectX up to version 3.0.
DirectInput had not been implemented at this time, making this version of
DirectX very limited.) Microsoft Windows 2000 should also be compatible.

GameForge also requires Microsoft DirectX 7.0 or above. Users may also want
to obtain the DirectX 7.0 SDK if they plan on expanding the GameForge library
files beyond their original scope.

GameForge also requires the Microsoft Visual C++ 6.0 compiler. GameForge’s
VC++ code may be compilable using Borland or some other VC++ compiler, but
functionality is not guaranteed.

4

Management and Technical Constraints

GameForge has a drop-dead delivery date of 04/17/00.

PA Software will be using the Rapid Prototyping model during design and
implementation:

Comment: The above diagram presents a useful overview of the project approach. It
does not replace a detailed timeline schedule, but it does provide a “quick look” at what
the team will be doing.

Prototype Engine
Requirements

Prototype GUI
Requirements

Prototype GUI
Design

Prototype Engine
Design

Prototype
System

GameForge
Requirements

List of Revisions List of Revisions

List of Revisions

Testing

Deliver
GameForge

5

Project Estimates

Historical Data Used for Estimates

A reference Function Point metric was calculated using Function Points
calculated from previous projects (namely, Demon Tree from CIS 490a and Function
Point Calculator from CIS 375.)

Reference Function Point Calculations:
Demon Tree FP: 121.03
Demon Tree Person Months: 2.5

Function Point Calculator FP: 83.74
Function Point Calculator Person Months: 1.5

Reference Estimated Person Months:
Average Function Point per Person Month: 52.119

Critique: Given the situation, the above computation is acceptable. However, it is
important to note that the sample for averaging is too small to be meaningful. In the real
world, the average should be computed using at least 5 to 10 projects in the same
application domain.

Estimation Techniques Applied and Results

The following is a breakdown of the numbers used in estimating the Function
Point for GameForge:

Estimation Technique: Function Point

Interface Simple Average Complex
Number of User Inputs 12 3 4
Number of User Outputs 8 5 2
Number of User Inquiries 10 3
Number of Files 2 3 1
Number of External Interfaces 1

14-Point Questionnaire: 34

Engine Simple Average Complex
Number of User Inputs 4 2
Number of User Outputs 1
Number of User Inquiries 15
Number of Files 6 3 10

6

Number of External Interfaces 1 1

14-Point Questionnaire: 42

Estimate for: Function Point

Based on the estimations from the previous section, and dividing by the
time estimate from previous projects, we can calculate a duration estimate for
GameForge:

Interface: 245.98
Engine: 339.19
Total Function Points: 585.17
GameForge est. Person Months: 11.23

LOC = FP*30
GameForge est. Lines of Code: 17,555

Estimation Technique: Constructive Cost Model (CoCoMo)

The CoCoMo model was also used to verify the estimate calculated by
using the Function Point metric.

GameForge assumes itself to be an Intermediate, Semi-Detached software
project.

Effort = a (KLOC) b

Duration = c (Effort) d

Equation values for Effort calculation:
a = 3.0
b = 1.12

Equation values for Duration calculation:
c = 2.5
d = 0.35

Estimate for: Constructive Cost Model (CoCoMo)

Effort = 3.0 (17.5) 1.12 = 74.016
Duration = 2.5 (74.016) 0.35 = 11.277

7

Reconciled Estimate

Effort (in Function Points) Estimate:
Total Function Points: 585.17

Effort (in CoCoMo) Estimate:
Effort = 74.016

Time in Person Months Estimate:
Function Point: 11.23
CoCoMo: 11.277
Average: 11.2535

Comment: The two estimates are amazingly close to one another. Don’t expect this to
be the case in most software projects.

Total Cost Estimate:
Industry average cost per Person Month: $8,000.00
X GameForge est. Person Months: $11.2535
GameForge est. total cost (w/o equipment): $90,028.00

Project Resources

While a complete team would contain all of the following personnel, PA Software
has four members. Each team member will be performing multiple jobs.

Required Staff
• Lead VC++/DirectX programmer
• Assistant VC++/DirectX programmer
• Lead VB/DirectX programmer
• Assistant VB/DirectX programmer
• Windows Help programmer / Tutorial programmer
• Documentation/Librarian
• Manual Designer
• Graphic Designer
• Web Designer
• Beta Testers

No special development systems are required for GameForge. PA software will
be using PCs and commonly available software.

Required Hardware
• 4 Development Systems

- PIII 600Mhz

8

- 256 MB RAM
- 20 GB HD
- 16 MB Video Card
- Zip Drive

• 1 CD-ROM Writer
• 1 Scanner

Required Software
• Windows 98SE (4 licenses)
• Microsoft Visual C++ 6.0 (2 licenses)
• Microsoft Visual Basic 6.0 (2 licenses)
• Microsoft MSDN Library (newest version) (4 licenses)
• Microsoft DirectX 7.0a SDK (4 copies)
• Microsoft Office 97 (4 licenses)
• Adobe Photoshop 5.5 (1 license)

9

Risk Management

Project Risks

Major risks we have determined for this software are as follows:
- Equipment failure
- Late delivery of software
- Technology will not meet expectations
- End users resist system
- Changes in requirements
- Deviation from software engineering standards
- Less reuse than planned
- Poor commenting of source code

Comment: It would appear that “late delivery” is a significant issue, givene the estimates
presented earlier in the plan.

For a more detailed list of project risks, see the Risk Mitigation, Monitoring, and
Management (RMMM) document.

Risk Table

Risks Category Probability Impact
Equipment failure TI 70% 1
Late delivery BU 30% 1
Technology will not meet expectations TE 25% 1
End users resist system BU 20% 1
Changes in requirements PS 20% 2
Deviation from software engineering
standards

PI 10% 3

Less reuse than planned PS 60% 3
Poor comments in code TI 20% 4

Critique: Team should define the meaning of the categories in the “category” column
and the numbers in the “impact” column.

Overview of Risk Mitigation, Monitoring, and Management (RMMM)

Risk mitigation, monitoring, and management helps us pre-determine any
possible major risks that may occur during development of this software. The
Requirements Specification and the System Specification will be reviewed and analyzed
to determine the major risks of developing this software. Each major risk found will be
further analyzed to determine its overall impact upon the system. These risks will be
recorded and a method will be devised to determine the best course of action if the risk
should occur. Certain risks will have preventative measures devised for them. This is to
reduce the possibility of more severe risks from occurring. All risks that could occur will

10

have a specified method to handle the risk. This is to ensure that if a risk does occur,
there is predetermined path to follow when attempting to manage the risk.

For more information see the Risk Mitigation, Monitoring, and Management (RMMM)
document.

11

Project Schedule

Project Task Set

Process Model

PA Software will be using the Rapid Prototyping model during design and
implementation:

Framework Activities
• Customer Communication
• Planning/Design
• Risk Analysis
• Programming
• Testing
• Customer Evaluation

Task Set
• Requirements specification
• Interface construction
• Engine construction
• Help construction
• Testing

Prototype Engine
Requirements

Prototype GUI
Requirements

Prototype GUI
Design

Prototype Engine
Design

Prototype
System

GameForge
Requirements

List of Revisions List of Revisions

List of Revisions

Testing

Deliver
GameForge

12

List of deliverables

Documentation

System Requirements Specification

Software Requirements Specification

Design Document

Project Plan

Software Quality Assurance Plan

Risk Mitigation, Monitoring, and Management Plan

Software Configuration Management Plan

Test Plan

Code

Engine Prototypes

Interface Mockups

Interface Database

Complete Engine

Complete Interface

Integrated System

Complete Product

13

Functional Decomposition

Interface Task Breakdown
• Level Editor construction
• New Project wizard construction
• New Sprite wizard construction
• Database construction
• Database communication with interface
• Exporting game files ability construction
• Exporting .cpp files ability construction

Engine Task Breakdown
• Object Handler construction
• Sprite Handler construction
• Image Handler construction (DirectDraw)
• Sound Handler construction (DirectSound)
• Input Handler construction (DirectInput)
• Text Handler construction
• Logic Handler construction

§ Attribute Handling
§ Unit Pathing

• File I/O Parser construction

Help Task Breakdown
• Interface Help construction
• Engine Help construction
• FAQ construction
• Game building tutorials
• Manual construction

Testing Task Breakdown
• In-house, white-box and black-box testing
• Outside beta testing (including experienced programmers and novice

users.)

14

Task Network

G a m e F o r g e

Interface Engine Help Test ing

Requirements
Specification

15

Timeline Chart

K = Ken, J = Jon, M = Matt, B = Bill
< = See next chart s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s

Requirements Spec. & Design
Requirements specification K, M, J, B

Engine architecture design K

Interface layout and design M

Interface Task Breakdown

Level Editor M >

New Project wizard M >

New Sprite wizard M >

Database (DB) construction M >

DB communication w/ interface M >

Exporting game files ability

Exporting .cpp files ability

Engine Task Breakdown

Object Handler K >

Sprite Handler K >

Image Handler (DDraw) K >

Sound Handler (DSound) J >

Input Handler (DInput) K >

Text Handler K

Logic Handler K >

Attribute Handling K >

Unit Pathing K >

File I/O Parser K

Help Task Breakdown

Interface Help

Engine Help

FAQ

Game building tutorials

Manual

Testing Task Breakdown

Unit testing B >

Integration testing

Validation testing

Performance testing

In-house Alpha testing

Outside beta testing

Documentation

System Requirements Specification B

Software Requirements Specification K, M

Software Quality Assurance Plan K >

Risk Management Plan B, M >

Software Configuration Mgmt. J, K >

Project Plan J >

Design Document

Test Plan

30-Jan 6-Feb 13-Feb2-Jan 9-Jan 16-Jan 22-Jan

16

More Timeline Chart

K = Ken, J = Jon, M = Matt, B = Bill
< = See previous chart s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r f s s m t w r

Requirements Spec. & Design
Requirements specification

Engine architecture design

Interface layout and design

Interface Task Breakdown

Level Editor <

New Project wizard <

New Sprite wizard <

Database (DB) construction

DB communication w/ interface

Exporting game files ability <

Exporting .cpp files ability <

Engine Task Breakdown

Object Handler <

Sprite Handler <

Image Handler (DDraw)

Sound Handler (DSound) <

Input Handler (DInput) <

Text Handler

Logic Handler <

Attribute Handling <

Unit Pathing <

File I/O Parser

Help Task Breakdown

Interface Help J

Engine Help J

FAQ J

Game building tutorials J

Manual J

Testing Task Breakdown

Unit testing < B

Integration testing B

Validation testing B

Performance testing B

In-house Alpha testing B

Outside beta testing B

Documentation

System Requirements Specification

Software Requirements Specification

Software Quality Assurance Plan <

Risk Management Plan <

Software Configuration Mgmt. <

Project Plan <

Design Document J

Test Plan J

27-Feb 5-Mar 9-Apr 16-Apr12-Mar 19-Mar 26-Mar 2-Apr

17

Staff Organization

Team Structure

PA Software uses the egoless (democratic) model for team structuring:

Role Definitions

Ken Nelson
Lead Engine Programmer: Ken is the complete DirectX engine
programmer, with the exception of DirectSound. This includes all
logic programming.
Lead Engine Designer: Ken is also the primary engine designer.
Interface Designer: Ken is part of the interface design team.
Help/Tutorial Programmer: Ken is part of the Windows Help
team.
Documentation: Ken is responsible for much of the required
documentation.
Additional Responsibilities: Ken is also the primary consultant
for Jon on DirectSound issues, and for Matt on interface design
issues.

Jonathan Schmoll
Assistant DirectX Programmer: Jon is coding the DirectSound
portion of the engine.
Engine Designer: Jon is part of the engine design team.
Interface Designer: Jon is part of the interface design team.
Help/Tutorial Programmer: Jon is part of the Windows Help
team.
Web Master: Jon is the author and maintainer of
www.patheticattempts.com.
Documentation: Jon is responsible for much of the required
documentation.

18

Matthew Forster
Lead Interface Programmer: Matt is the complete interface
programmer, including all database (SQL) programming, Visual
Basic programming, and DirectX (for VB) programming.
Interface Designer: Matt is part of the interface design team.
Documentation: Matt is responsible for much of the required
documentation.

Bill Lord
Engine Designer: Bill is part of the engine design team.
Documentation: Bill is responsible for much of the required
documentation.

Management Reporting and Communication

Mechanisms for Progress Reporting

Progress is communicated via e-mail. All files sent to other teams and/or
team members are done via email or ICQ. These communications are
done informally, unless special documentation of progress is required. A
test log is kept for error tracking.

Mechanisms for Inter/Intra Team Communication

The GameForge team conducts weekly meetings to update other team
members on their progress and ask questions that may not be answerable
via electronic communication. All other communication is done
electronically. Most is done via e-mail, but the GameForge team uses ICQ
for real-time electronic communication, when needed.

PA Software contacts our clients via email, and sets up in-person meetings
when necessary. A beta tester report form is used for formal testing
outside of PA Software.

19

Tracking and Control Mechanisms

Quality Assurance and Control

Scope and intent of SQA activities

The SQA team’s objective is to ensure that the product does not deviate
far from the original design specifications. If it is discovered that deviation
has occurred, the SQA team will notify the development team to prevent
future deviations and to correct the previous deviations. Also, the SQA
team will perform a walkthrough to analyze the product’s quality at any
particular stage of development. Error detection and possible
enhancements are also expressed to the development team.

SQA organizational role

The SQA organizational role is to review the product(s) at specific times
during product implementation. Upon reviewing, the SQA team’s duties
will be to evaluate the software at its current development stage and
recognize any defects in the subsequent stage (design or implementation).
The SQA team will directly interact with the software engineering team in
group discussions, discussing any errors or possible enhancements that
have been identified. In addition, the SQA team will ensure that the
software engineering team has not deviated in any way from the initial
design specifications.

Change Management and Control

Scope and intent of SQA activities

The primary focus of the Software Configuration Management (SCM) is
to identify and control major software changes, ensure that change is being
properly implemented, and to report changes to any other personnel or
clients who may have an interest.

The objective of SCM is to limit the impact changes may have on the
entire system. This will help to eliminate unnecessary changes, and to
monitor and control any necessary changes. This allows software
development to continue, despite large and/or insignificant changes
without significant backtracking, lessening development time and
resulting in a higher-quality product.

The SCM team will oversee these activities, and any changes to existing
code or architectural design must pass their inspection before they are
carried out.

20

SCM Organizational Role

The SCM team will work closely with the SQA (Software Quality
Assurance) team, cross-examining many of the submitted documents and
software change requests. Software Engineers will submit change
requests directly to the SCM team for their inspection and approval.

An SCM leader will be appointed to oversee all SCM activities. He will
receive all change requests, and will make any final decisions regarding
those changes, including which software engineer will carry out approved
changes. The SCM leader also keeps a library of all submitted requests,
even those that have been denied.

Critique: The sections on tracking and control need to be more specific. Who (by name)
is responsible for SQA and SCM for this project? What are major SQA checkpoints,
reviews? Where can we get more information on change control procedures for this
project?

21

Appendix

Questions for Function Point 14-Point Questionnaire

1. Does the system require reliable backup and recovery?
2. Are data communications required?
3. Are there distributed processing functions?
4. Is performance critical?
5. Will the system run in an existing, heavily utilized operational environment?
6. Does the system require on-line data entry?
7. Does the on-line data entry require the input transaction to be built over multiple

screens or operations?
8. Are the master files updated on-line?
9. Are the inputs, outputs, files, or inquiries complex?
10. Is the internal processing complex?
11. Is the code designed to be reusable?
12. Are conversion and installation included in the design?
13. Is the system designed for multiple installations in different organizations?
14. Is the application designed to facilitate change and ease of use by the user?

Note: Each question is answered with a value of 0-5, based on importance (0
being the least important and 5 being the most important)

CoCoMo Value Chart

a b
mode basic intermediate basic intermediate

organic 2.4 3.2 1.05 1.05
semi-detached 3.0 3.0 1.12 1.12

embedded 3.6 2.8 1.20 1.20

